Propensity score matching
In the statistical analysis of observational data, propensity score matching (PSM) is a statistical matching technique that attempts to estimate the effect of a treatment, policy, or other intervention by accounting for the covariates that predict receiving the treatment. PSM attempts to reduce the bias due to confounding variables that could be found in an estimate of the treatment effect obtained from simply comparing outcomes among units that received the treatment versus those that did not. The technique was first published by Paul Rosenbaum and Donald Rubin in 1983, and implements the Rubin causal model for observational studies.
The possibility of bias arises because the apparent difference in outcome between these two groups of units may depend on characteristics that affected whether or not a unit received a given treatment instead of due to the effect of the treatment per se.
[ PM | Exclude me | Exclude from subreddit | FAQ / Information | Source | Donate ] Downvote to remove | v0.28