Reddit people! I am sick and tired of the misconceptions and lies spread about the food industry. I am here to help clear up any questions you may have! IamA Food Scientist AMA!

Let's take a look at what WHO says:

Food safety Areas of work Foodborne diseases Food hygiene Food technologies Microbiological risks Chemical risks International food standards (Codex Alimentarius) INFOSAN Antimicrobial resistance Zoonoses and the environment Nutrition and food security Document centre Databases Frequently asked questions on genetically modified foods

These questions and answers have been prepared by WHO in response to questions and concerns from WHO Member State Governments with regard to the nature and safety of genetically modified food.

  1. What are genetically modified (GM) organisms and GM foods?

Genetically modified organisms (GMOs) can be defined as organisms (i.e. plants, animals or microorganisms) in which the genetic material (DNA) has been altered in a way that does not occur naturally by mating and/or natural recombination. The technology is often called “modern biotechnology” or “gene technology”, sometimes also “recombinant DNA technology” or “genetic engineering”. It allows selected individual genes to be transferred from one organism into another, also between nonrelated species. Foods produced from or using GM organisms are often referred to as GM foods.

  1. Why are GM foods produced?

GM foods are developed – and marketed – because there is some perceived advantage either to the producer or consumer of these foods. This is meant to translate into a product with a lower price, greater benefit (in terms of durability or nutritional value) or both. Initially GM seed developers wanted their products to be accepted by producers and have concentrated on innovations that bring direct benefit to farmers (and the food industry generally).

One of the objectives for developing plants based on GM organisms is to improve crop protection. The GM crops currently on the market are mainly aimed at an increased level of crop protection through the introduction of resistance against plant diseases caused by insects or viruses or through increased tolerance towards herbicides.

Resistance against insects is achieved by incorporating into the food plant the gene for toxin production from the bacterium Bacillus thuringiensis (Bt). This toxin is currently used as a conventional insecticide in agriculture and is safe for human consumption. GM crops that inherently produce this toxin have been shown to require lower quantities of insecticides in specific situations, e.g. where pest pressure is high. Virus resistance is achieved through the introduction of a gene from certain viruses which cause disease in plants. Virus resistance makes plants less susceptible to diseases caused by such viruses, resulting in higher crop yields.

Herbicide tolerance is achieved through the introduction of a gene from a bacterium conveying resistance to some herbicides. In situations where weed pressure is high, the use of such crops has resulted in a reduction in the quantity of the herbicides used.

  1. Is the safety of GM foods assessed differently from conventional foods?

Generally consumers consider that conventional foods (that have an established record of safe consumption over the history) are safe. Whenever novel varieties of organisms for food use are developed using the traditional breeding methods that had existed before the introduction of gene technology, some of the characteristics of organisms may be altered, either in a positive or a negative way. National food authorities may be called upon to examine the safety of such conventional foods obtained from novel varieties of organisms, but this is not always the case.

In contrast, most national authorities consider that specific assessments are necessary for GM foods. Specific systems have been set up for the rigorous evaluation of GM organisms and GM foods relative to both human health and the environment. Similar evaluations are generally not performed for conventional foods. Hence there currently exists a significant difference in the evaluation process prior to marketing for these two groups of food.

The WHO Department of Food Safety and Zoonoses aims at assisting national authorities in the identification of foods that should be subject to risk assessment and to recommend appropriate approaches to safety assessment. Should national authorities decide to conduct safety assessment of GM organisms, WHO recommends the use of Codex Alimentarius guidelines (See the answer to Question 11 below).

  1. How is a safety assessment of GM food conducted?

The safety assessment of GM foods generally focuses on: (a) direct health effects (toxicity), (b) potential to provoke allergic reaction (allergenicity); (c) specific components thought to have nutritional or toxic properties; (d) the stability of the inserted gene; (e) nutritional effects associated with genetic modification; and (f) any unintended effects which could result from the gene insertion.

  1. What are the main issues of concern for human health?

While theoretical discussions have covered a broad range of aspects, the three main issues debated are the potentials to provoke allergic reaction (allergenicity), gene transfer and outcrossing.

Allergenicity As a matter of principle, the transfer of genes from commonly allergenic organisms to non-allergic organisms is discouraged unless it can be demonstrated that the protein product of the transferred gene is not allergenic. While foods developed using traditional breeding methods are not generally tested for allergenicity, protocols for the testing of GM foods have been evaluated by the Food and Agriculture Organization of the United Nations (FAO) and WHO. No allergic effects have been found relative to GM foods currently on the market.

Gene transfer Gene transfer from GM foods to cells of the body or to bacteria in the gastrointestinal tract would cause concern if the transferred genetic material adversely affects human health. This would be particularly relevant if antibiotic resistance genes, used as markers when creating GMOs, were to be transferred. Although the probability of transfer is low, the use of gene transfer technology that does not involve antibiotic resistance genes is encouraged.

Outcrossing The migration of genes from GM plants into conventional crops or related species in the wild (referred to as “outcrossing”), as well as the mixing of crops derived from conventional seeds with GM crops, may have an indirect effect on food safety and food security. Cases have been reported where GM crops approved for animal feed or industrial use were detected at low levels in the products intended for human consumption. Several countries have adopted strategies to reduce mixing, including a clear separation of the fields within which GM crops and conventional crops are grown.

  1. How is a risk assessment for the environment performed?

Environmental risk assessments cover both the GMO concerned and the potential receiving environment. The assessment process includes evaluation of the characteristics of the GMO and its effect and stability in the environment, combined with ecological characteristics of the environment in which the introduction will take place. The assessment also includes unintended effects which could result from the insertion of the new gene.

  1. What are the issues of concern for the environment?

Issues of concern include: the capability of the GMO to escape and potentially introduce the engineered genes into wild populations; the persistence of the gene after the GMO has been harvested; the susceptibility of non-target organisms (e.g. insects which are not pests) to the gene product; the stability of the gene; the reduction in the spectrum of other plants including loss of biodiversity; and increased use of chemicals in agriculture. The environmental safety aspects of GM crops vary considerably according to local conditions.

  1. Are GM foods safe?

Different GM organisms include different genes inserted in different ways. This means that individual GM foods and their safety should be assessed on a case-by-case basis and that it is not possible to make general statements on the safety of all GM foods.

GM foods currently available on the international market have passed safety assessments and are not likely to present risks for human health. In addition, no effects on human health have been shown as a result of the consumption of such foods by the general population in the countries where they have been approved. Continuous application of safety assessments based on the Codex Alimentarius principles and, where appropriate, adequate post market monitoring, should form the basis for ensuring the safety of GM foods.

/r/IAmA Thread Parent