The USDA says the TDZ (Temperature Danger Zone) is 40°F-140°F, but surely theres somewhat of a buffer zone. What is it?

This article talks about the issue a bit, in the context of trying to push the limits when cooking sous vide:

You were probably taught that there’s a “danger zone” between 40°F and 140°F (4.4°C and 60°C). These temperatures aren’t quite right: it’s well known that food pathogens can only multiply between 29.7°F (-1.3°C) and 126.1°F (52.3°C), while spoilage bacteria begin multiplying at 23°F (-5°C) (Snyder, 2006; Juneja et al., 1999; FDA, 2011). Moreover, contrary to popular belief, food pathogens and toxins cannot be seen, smelt, or tasted.

So why were you taught that food pathogens stop multiplying at 40°F (4.4°C) and grow all the way up to 140°F (60°C)? Because it takes days for food pathogens to grow to a dangerous level at 40°F (4.4°C) (FDA, 2011) and it takes many hours for food to be made safe at just above 126.1°F (52.3°C) – compared with only about 12 minutes (for meat) and 35 minutes (for poultry) to be made safe when the coldest part is 140°F (60°C) (FSIS, 2005; FDA, 2009, 3-401.11.B.2). Indeed, the food pathogens that can multiply down to 29.7°F (-1.3°C) – Yersinia enterocolitica and Listeria monocytogenes – can only multiply about once per day at 40°F (4.4°C) and so you can hold food below 40°F (4.4°C) for five to seven days (FDA, 2011). At 126.1°F (52.3°C), when the common food pathogen Clostridium perfringens stops multiplying, it takes a very long time to reduce the food pathogens we’re worried about – namely the Salmonella species, Listeria monocytogenes, and the pathogenic strains of Escherichia coli – to a safe level; in a 130°F (54.4°C) water bath (the lowest temperature I recommend for cooking sous vide) it’ll take you about 2½ hours to reduce E. coli to a safe level in a 1 inch (25 mm) thick hamburger patty and holding a hamburger patty at 130°F (54.4°C) for 2½ hours is inconceivable with traditional cooking methods – which is why the “danger zone” conceived for traditional cooking methods doesn’t start at 130°F (54.4°C). [Note that Johnson et al. (1983) reported that Bacillus cereus could multiply at 131°F/55°C, but no one else has demonstrated growth at this temperature and so Clostridium perfringens is used instead.]

/r/Cooking Thread